Experimental evidence for a partially dissociated water bilayer on Ru[0001].

نویسندگان

  • Jonas Weissenrieder
  • Anders Mikkelsen
  • Jesper N Andersen
  • Peter J Feibelman
  • Georg Held
چکیده

Core-level photoelectron spectra, in excellent agreement with ab initio calculations, confirm that the stable wetting layer of water on Ru[0001] contains O-H and H2O in roughly 3:5 proportion, for OHx coverages between 0.25 and 0.7 ML, and T<170 K. Proton disorder explains why the wetting structure looks to low energy electron diffraction (LEED) to be an ordered p(square root of 3 x square root of 3)R30 degrees adlayer, even though approximately 3/8 of its molecules are dissociated. Complete dissociation to atomic oxygen starts near 190 K. Low photon flux in the synchrotron experiments ensured that the diagnosis of the nature of the wetting structure quantified by LEED is free of beam-induced damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different surface chemistries of water on Ru[0001]: from monomer adsorption to partially dissociated bilayers.

Density functional theory has been used to perform a comparative theoretical study of the adsorption and dissociation of H(2)O monomers and icelike bilayers on Ru[0001]. H(2)O monomers bind preferentially at atop sites with an adsorption energy of approximately 0.4 eV/H(2)O. The main bonding interaction is through the H(2)O 1b(1) molecular orbital which mixes with Ru d(z)2 states. The lower-lyi...

متن کامل

Agostic interactions and dissociation in the first layer of water on Pt(111).

Recent quantum mechanical (QM) calculations for a monolayer of H(2)O on Ru(0001) suggested a novel stable structure with half the waters dissociated. However, different studies on Pt(111) suggested an undissociated bilayer structure in which the outer half of the water has the OH bonds toward the surface rather than the O lone pair. Since water layers on Pt are important in many catalytic proce...

متن کامل

Electronic structure of few-layer epitaxial graphene on Ru(0001).

The electronic structure of epitaxial monolayer, bilayer, and trilayer graphene on Ru(0001) was determined by selected-area angle-resolved photoelectron spectroscopy (micro-ARPES). Micro-ARPES band maps provide evidence for a strong electronic coupling between monolayer graphene and the adjacent metal, which causes the complete disruption of the graphene pi-bands near the Fermi energy. However,...

متن کامل

Comment on "vibrational recognition of hydrogen-bonded water networks on a metal surface".

The adsorption of water on Pt(111) surface has been studied with ab initio molecular dynamics simulation. Both the energetics and vibrational dynamics indicate the existence of a well-ordered molecular bilayer on this surface. This conclusion is in contrast to the recent result of water on Ru(0001) surface, but agrees with available experiments. In addition, our calculation identifies two diffe...

متن کامل

Water adsorption on metal surfaces: A general picture from density functional theory studies

We present a density functional theory study of water adsorption on metal surfaces. Prototype water structures including monomers, clusters, one-dimensional chains, and overlayers have been investigated in detail on a model system—a Pt~111! surface. The structure, energetics, and vibrational spectra are all obtained and compared with available experimental data. This study is further extended t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 93 19  شماره 

صفحات  -

تاریخ انتشار 2004